Short Principal Ideal Problem in multicubic fields
نویسندگان
چکیده
منابع مشابه
GENERALIZED PRINCIPAL IDEAL THEOREM FOR MODULES
The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we extend the Generalized Principal Ideal Theorem to modules.
متن کاملEfficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields
This paper gives polynomial time quantum algorithms for computing the ideal class group (CGP) under the Generalized Riemann Hypothesis and solving the principal ideal problem (PIP) in number fields of arbitrary degree. These are are fundamental problems in number theory and they are connected to many unproven conjectures in both analytic and algebraic number theory. Previously the best known al...
متن کاملPrincipal Ideal Domains
Last week, Ari taught you about one kind of “simple” (in the nontechnical sense) ring, specifically semisimple rings. These have the property that every module splits as a direct sum of simple modules (in the technical sense). This week, we’ll look at a rather different kind of ring, namely a principal ideal domain, or PID. These rings, like semisimple rings, have the property that every (finit...
متن کاملA Generalized Principal Ideal Theorem
KrulΓs principal ideal theorm [Krull] states that q elements in the maximal ideal of a local noetherian ring generate an ideal whose minimal components are all of height at most q. Writing R for the ring, we may consider the q elements, x19 , xq say, as coordinates of an element xeR. It is an easy observation that every homomorphism R —> R carries x to an element of the ideal generated by xi9 ,...
متن کاملOn Principal Ideal Testing in Totally Complex Quartic Fields and the Determination of Certain Cyclotomic Constants
Let if be any totally complex quartic field. Two algorithms are described for determining whether or not any given ideal in if is principal. One of these algorithms is very efficient in practice, but its complexity is difficult to analyze; the other algorithm is computationally more elaborate but, in this case, a complexity analysis can be provided. These ideas are applied to the problem of det...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Cryptology
سال: 2020
ISSN: 1862-2984,1862-2976
DOI: 10.1515/jmc-2019-0028